- unbeschränkt fortsetzbar
- неограниченно продолжаемый
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Außerwesentliche Singularität — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Definitionslücke — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Hebbar — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Hebbare Singularität — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Isolierte Singularität — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Riemannscher Hebbarkeitssatz — Der riemannsche Hebbarkeitssatz (nach Bernhard Riemann) ist ein grundlegendes Ergebnis der mathematischen Funktionentheorie. Der Satz besagt, dass eine Singularität (also eine Stelle, an der eine holomorphe Funktion nicht definiert ist) genau… … Deutsch Wikipedia
Singularität (Mathematik) — Eine Singularität bezeichnet in der Mathematik einen Punkt, an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Singulärer Punkt — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia
Wesentliche Singularität — Eine Singularität bezeichnet in der Mathematik einen Punkt an dem ein mathematisches Objekt nicht definiert ist oder an der eine sonst zutreffende Eigenschaft nicht vorhanden ist. Beispiele von Mengen mit singulären Punkten sind: Ein Intervall,… … Deutsch Wikipedia